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Anstract

The parameter stability and global bifurcations of a strong nonlinear system with parametric excitation and external

excitations are investigated in detail. Using the method of Multiple scales, the nonlinear system is transformed to the

averaged equation. The parameter stability of solution in the case of principal parametric resonance is developed. Based on

the averaged equation, the continuation algorithm is utilized to analyze the detailed bifurcation scenario as the parameter

f0 is varied. The results indicate that there exist two limit points and neutral saddle points. Finally, a series of branching

points were obtained by changing the parameters f0 and r.
r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Parametrically excited vibrations have been extensively applied to engineering systems [1], such
as the vibration of machines, dynamically buckled motions of elastic structures, the roiling motions
of ships, the motions of rockets and satellites, dynamic vibration of gear pairs system, etc. These
physical systems may be modeled as a system of nonlinear dynamics with parametric excitation and external
excitation [1].

In the past two decades, research on nonlinear dynamics with parametric excitation and external excitation
has received more and more attention [2–5]. Parameter stability problem of the parametrically excited system
is an important and difficult one. Furthermore, the global bifurcations and chaotic dynamics of the system are
studied much less, especially in dynamic vibration of gear pairs system with time-varying stiffness and time-
varying damping coefficient and external excitation [6].

In 1997, Esmailzadeh and Nakhaie-Jazar [7] found that there exit necessary and sufficient conditions for the
existence of at least one periodic solution for the Mathieu–Duffing equation. Natsiavas et al. [8,9] investigated
a Mathieu–Duffing oscillator under constant external load. They revealed that the oscillator examined may
exhibit strong (first-order) resonance for two ranges of the forcing frequency. The first one occurs around the
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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excitation frequency, and it has an identical form with the Mathieu–Duffing oscillator under principal
parametric resonance. However, unlike the Mathieu–Duffing oscillator with no constant external forcing, the
system examined by Refs. [8,9] exhibited a second strong resonance, which occurs in forcing frequency ranges
near the linear natural frequency. Luo [10,11] in 2003 investigated the Mathieu–Duffing oscillator with a twin-
well potential, and in his work the approximate criteria for the onset and destruction of a specified, primary
resonant band of the Mathieu–Duffing oscillator was developed. Ng et al. [12,13] investigated the Mathieu
equation to which is added a cubic nonlinearity x3 term using averaging method. The main objective of the
above studies was to apply both analytical and numeric methodology for determining periodic steady-state
motions.

On the research of local and global bifurcations of parametric excitation systems, the literature [14–18] must
be mentioned. The global bifurcations and chaotic dynamics for high-dimensional nonlinear systems are very
important theoretical problems in science and engineering as they can reveal the instabilities of motion and
complicated dynamical behaviors.

Zhang and Yu [14] considered the dynamical properties of both local and global bifurcations for a
parametrically and externally excited mechanical system. With the aid of normal form theory and the method
of Multiple scales, they found that this system could exhibit the homoclinic and heteroclinic bifurcations and
multiple limit cycles. Cao et al. [15] studied the global bifurcations and chaotic dynamics of a string-beam
system subject to parametric and external excitations by using the method of Galerkin and Multiple scales.
The theory of normal form was also used to find the explicit formulas of normal form associated with one
double zero and a pair of pure imaginary eigenvalues. The bifurcation analysis indicated that the coupled
system can undergo pitch and homoclinic bifurcation and the Silnikov-type single-pluse homoclinic orbit.
Sofroniou and Bishop [16] investigated the effect of the symmetry breaking by comparing the control
parameter space of frequency and amplitude of the forcing with its symmetric counterpart. Approximate
bifurcation analysis was used to predict the new escape boundary using a harmonic balance scheme. Li et al.
[17] implied that motion of the parametrically and externally excited mechanical system can jump from a
lower-energy plane to a higher-energy plane, which was also associated with jumping phenomena of the
amplitude-modulated oscillations.

In this paper, we will consider the control equation of gear pairs system combined with friction and time-
varying stiffness following [6]:

€xþ �c0ð1þ ce sinotÞ _xþ k0ð1þ �ke sinotÞf ðxÞ ¼ f 0 þ �f 1 sinot (1)

which is a strong nonlinear parametric excitation system, where the dots indicate differentiation
with respect to time t, e is a small parameter, c0 is the coefficient of viscous damping, k0 is the
coefficient of stiffness, ce, ke and o are respectively the amplitude and frequency of the parametric excitation,
f0 and f1 are the amplitudes of the external excitation. The piecewise linear function of gear backlash is
simplified as

f ðxÞ ¼ �xþ �mx3 (2)

where m is the coefficient of the nonlinear term.
In this paper, we will investigate the stability and the bifurcation of the equilibria of Eq. (1). The original

system is transformed to the averaged equation by Multiple-scales method. Then, we get the parameter regions
of stability and instability. The bifurcation parameters of the system are controlled to obtain two generic
codim 1 bifurcations that can be detected along the equilibrium curve. Finally, the route of continuation of the
codim 2 bifurcation is investigated.
2. Solutions using the Multiple-scales method

We may use the expansion procedure obtained formally by the Multiple-scales method [1,10,11,18]. The
independent variable t can be extended to introduce alternative independent variables:

Tn ¼ �
nt; n ¼ 0; 1; 2 (3)
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where T0 is fast variable, and T1, T2 are the slow variables. The operator can now be expressed as the
derivative expansions:

dx

dt
¼ D0x0 þ �ðD0x1 þD1x0Þ þ �

2ðD0x2 þD1x1 þD2x0Þ þOð�3Þ (4)

d2x

dt2
¼ D2

0x0 þ �ð2D0D1x0 þD2
0x1Þ þ �

2ðD2
1x0 þD2

0x2 þ 2D0D1x1 þ 2D0D2x0Þ þOð�3Þ (5)

When the nonlinearity is assumed to be of order e, x may be represented by an expansion having the form

xðt; �Þ ¼ x0ðT0;T1;T2Þ þ �x1ðT0;T1;T2Þ þ �
2x2ðT0;T1;T2Þ þ �

3x3ðT0;T1;T2Þ (6)

Then we substitute Eq. (6) into Eq. (1) and set the coefficient of each power of e equal to zero. Each of the xn

are independent of e, substituting Eqs. (4)–(6) into Eq. (1) and collecting terms order-by-order in e sequence of
differential equations are obtained

�0 : D2
0x0 � k0x0 ¼ f 0

�1 : D2
0x1 � k0x1 ¼ f 1 sinot� 2D0D1x0 � c0ð1þ ce sinotÞD0x0 � ðmk0x3

0 þ k0kex0 sinotÞ (7,8)

Let k0 ¼ o1
2, to the first-order approximation, these resonant conditions are (a) principal resonance o ¼ o1,

(b) superharmonic resonance o ¼ o1/n and (c) subharmonic resonance o ¼ o1/n.
The principal resonance o ¼ o1 is the one to be analyzed in this paper. To describe quantitatively the

nearness of these resonances, we introduce the detuning parameters s as follows:

o ¼ o1 þ �s (9)

Then, we can get the solution of Eq. (7) as follows:

x0 ¼ AðT1Þ exp ðio1T0Þ þ ĀðT1Þ exp ð�io1T0Þ þ f 0=k0 (10)

where A(T1) is an undetermined function of T1 at this level of approximation, and ĀðT1Þ is the complex
conjugate of A(T1). They can be determined by imposing the solvability conditions at the next level of
approximation.

According to the Multiple-scales theory, by substituting Eq. (10) into Eq. (8) and using Eq. (9), the equation
is expressed in the single-DOF form:

D2
0x1 þ k0x1 ¼ �3mo2

1A
2A1 �

3mf 2
0

o2
1

A�
1

2
if 1 e

irT1 þ
1

2
if 0k1 e

irT1 � ic0o1A� iA0o1

� �
eio1T0 þ CC (11)

Eliminating the terms that produce secular terms in Eq. (11) yields the solvability condition:

�3mo2
1A

2A1 �
3mf 2

0

o2
1

A�
1

2
if 1 e

irT1 þ
1

2
if 0k1 e

irT1 � ic0o1A� iA0o1 ¼ 0 (12)

In order to solve Eq. (12), we introduce the polar form

A ¼ 1
2
a exp ðibÞ (13)

where a, b are real functions of time T1. Substituting Eq. (13) into Eq. (12), we get

�
3mo2

1a
3

8
exp ðibÞ �

3mf 2
0a

2o2
1

exp ðibÞ þ
1

2
iðf 0k1 � f 1Þ e

irT1

� i
c0o1a

2
exp ðibÞ �

1

2
io1a

0 exp ðibÞ �
1

2
o1ab0 exp ðibÞ

� �
¼ 0 (14)
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Letting eiðrT1�bÞ ¼ cos ðrT1 � bÞ þ i sin ðrT1 � bÞ and separating the real and imaginary parts of the resulting
equations yield the following set of amplitude- and phase-modulation equations:

�
3mo2

1a
3

8
�

3mf 2
0a

2o2
1

þ 1
2
o1ab0 � 1

2
ðf 0k1 � f 1Þ sin ðrT1 � bÞ ¼ 0

1
2
ðf 0k1 � f 1Þ cos ðrT1 � bÞ �

c0o1a

2
� 1

2
o1a0 ¼ 0

8>><
>>: (15)

So

ab0 ¼
3mo1a

3

4
þ

3mf 2
0a

o3
1

þ
f 0k1 � f 1

o1
sin ðrT1 � bÞ

a0 ¼
f 0k1 � f 1

o1
cos ðrT1 � bÞ � c0a (16,17)

Let

j ¼ rT1 � b or
dj
dT1
¼ r�

db

dT1
(18)

Eqs. (16) and (17) are translated to

a
dj
dT1
¼ ra�

3mo1a
3

4
�

3mf 2
0a

o3
1

�
f 0k1 � f 1

o1
sinj

da

dT1
¼

f 0k1 � f 1

o1
cosj� c0a (19,20)

there are two possibilities: either trivial solutions

a ¼ 0 (21)

Or non-trivial solutions,

aa0 (22)

we only take the second condition into consideration. Periodic solutions of Eq. (1) correspond to the fixed
points of Eqs. (19) and (20), which are obtained by setting (dj/dT1) ¼ 0, (da/dT1) ¼ 0.

a6 þ W1a4 þ W2a2 þ W3 ¼ 0 (23)

where li(i ¼ 1,2,3) are parameters which can be represented as,

l1 ¼ 8
3mf 2

0

o3
1

� r
� ��

3mo1; l2 ¼
3mf 2

0

o3
1

� r
� �2

þ c20

" #,
3mo1

4

� �2

,

l3 ¼ �
f 0k1 � f 1

o1

� �2
,

3mo1

4

� �2

(24,25,26)

3. Stability of the solutions

In this section, we will detect the stability of the solution and get the regions of parameter stability. We also
consider the Eq. (19) and (20).

a
dj
dT1
¼ ra�

3mo1a
3

4
�

3mf 2
0a

o3
1

�
f 0k1 � f 1

o1
sinj

da

dT1
¼

f 0k1 � f 1

o1
cosj� c0a (27)
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In the investigation of the stability of the trivial solutions, it is important to transform Eq. (27) into the
Cartesian form in order to avoid dividing by a. By using the change of variables,

u ¼ a cosj; v ¼ a sinj (28)

In Eq. (27), we can obtain

du

dT1
¼

f 0k1 � f 1

o1
� c0u� r�

3mf 2
0

o3
1

�
3mo1

4
ðu2 þ v2Þ

� �
v

dv

dT1
¼ �c0vþ r�

3mf 2
0

o3
1

�
3mo1

4
ðu2 þ v2Þ

� �
u (29,30)

We need to investigate the characteristic equation of the Jacobian matrix of the averaged Eqs. (29) and (30),

Dwf ¼

�c0 þ
3mo1

2
u �rþ 3mf 2

0

o3
1

þ 3mo1

4
u2 þ 9mo1

4
v2

r� 3mf 2
0

o3
1

� 9mo1

4
u2 � 3mo1

4
v2 �c0 �

3mo1

2
uv

2
64

3
75 (31)

where

w ¼ ðu; vÞT (32)

f ¼

f 0k1�f 1

o1
� c0u� r� 3mf 2

0

o3
1

� 3mo1

4
ðu2 þ v2Þ

� �
v

�c0vþ r� 3mf 2
0

o3
1

� 3mo1

4
ðu2 þ v2Þ

� �
u

2
64

3
75 (33)

And also the Eq. (33) can be translated,

f n
¼

�c0x� r� 3mf 2
0

o3
1

� 3mo1

4
ðxþ b̄Þ2 þ ðyþ c̄Þ2
� �� �

yþ 3mo1

4
ðxþ b̄Þ2 þ ðyþ c̄Þ2
� �

c̄

�c0yþ r� 3mf 2
0

o3
1

� 3mo1

4
xþ b̄
� �2

þ yþ c̄ð Þ
2

� �� �
x� 3mo1

4
ðxþ b̄Þ2 þ ðyþ c̄Þ2
� �

b̄

2
64

3
75 (34)

where b̄, c̄ are the roots of the following equations,

f 0k1�f 1

o1
� r� 3mf 2

0

o3
1

� �
c� c0b ¼ 0

r� 3mf 2
0

o3
1

� �
b� c0c ¼ 0

8><
>: (35,36)

The Jacobian matrix of the averaged Eqs. (35) and (36) is,

Dwn f n
¼

�c0 þ
3mo1

2
ðxþ b̄Þðyþ c̄Þ �rþ 3mf 2

0

o3
1

þ 9mo1

4
ðyþ c̄Þ2 þ 3mo1

4
ðxþ b̄Þ2

r� 3mf 2
0

o3
1

� 9mo1

4
ðxþ b̄Þ2 � 3mo1

4
ðyþ c̄Þ2 �c0 �

3mo1

2
ðyþ c̄Þðxþ b̄Þ

2
64

3
75 (37)

The eigenvalue equation can be obtained at x̄ ¼ ȳ ¼ 0,

lþ ðc0 � 2Zb̄c̄Þ �mþ 3Zc̄2 þ Zb̄
2

m� 3Zb̄
2
� Zc̄2 lþ ðc0 � 2Zb̄c̄Þ

						
						 ¼ 0 (38)

where

2Z ¼
3mo1

2
; m ¼ r�

3mf 2
0

o3
1

; b ¼
f 0k1 � f 1

o1
; b̄ ¼

c0b
m2 þ c20

; c̄ ¼
mb

m2 þ c20
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Fig. 1. Parameter stability regions: o1 ¼ 0.5975, f1 ¼ 10, k1 ¼ 41.33, c0 ¼ 3.436, m ¼ 0.3, the red and black lines of the figure correspond

to the case q ¼ 0 and D ¼ 0.
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And the eigenvalues can be depicted as,

l1;2 ¼ �
1

2
p�

ffiffiffiffi
D
p

(39)

where

p ¼ 2c0,

q ¼ c20 � ð4Zmb̄
2
þ 4Zmc̄2 þ 6Z2b̄

2
c̄2 þ m2 � 3Z2c̄4 � 3Z2b̄

4
Þ,

D ¼ p2 � 4q ¼ 4ð4Zmb̄
2
þ 4Zmc̄2 þ 6Z2b̄

2
c̄2 þ m2 � 3Z2c̄4 � 3Z2b̄

4
Þ (40,41,42)

There are four different cases on the condition of D40,
(1)
 with qo0, the eigenvalues l1,l2 are contrary roots, and then singular point ðb̄; c̄Þ is a saddle point, and the
steady-state solution is instability.
(2)
 with q40, p40, D40, both l1,l2 are negative roots, and the singular point ðb̄; c̄Þ is a stable node.

(3)
 with q40, p40, Do0, l1,l2 are conjugate complex roots with <ðlÞo0. Hence, the singular point is a

stable focus.

(4)
 with q40, p40, D ¼ 0, l1,l2 are negative double roots, the singular point is a stable critical node.
Fig. 1 illustrates the stability and instability of parameters f0 and r. The corresponding parameters are
chosen as o1 ¼ 0.5975, f1 ¼ 10, k1 ¼ 41.33, c0 ¼ 3.436, m ¼ 0.3. The red and black lines of the figure
correspond to the case q ¼ 0and D ¼ 0, respectively. We can obtain five different stability regions as follows,
(1)
 in regions of UI ¼ {(f0,r)|q40,D40}, UV ¼ {(f0,r)|q40,D40}, singular point ðb̄; c̄Þ is a node point.

(2)
 UII ¼ {(f0,r)|qo0,D40}, UIII ¼ {(f0,r)|qo0,Do0}, UIV ¼ {(f0,r)|qo0,D40}, in these regions, the

singular point are unstable saddle points.
4. Bifurcation and continuation

The main goal of the above section was to qualitatively characterize the nature of the stationary solution ,
which was approached at long times. Our next goal is to study the pattern of bifurcation that takes place as we
vary the parameter f0. This can done by studying the change in the eigenvalue of the Jacobian matrix and also
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following the continuation algorithm. In continuous-time systems there are two generic codim 1 bifurcations,
fold and Hopf-point, that can be detected along the equilibrium curve. The equilibrium curve can also have
branch points. To detect these singularities, there are three test functions,

f1ðx; f 0Þ ¼ det
F x

vT

� �
; f2ðx; f 0Þ ¼ detð2f xðx; f 0ÞYInÞ; f3ðx; f 0Þ ¼ vnþ1 (43,44,45)
Fig. 2. Continuation curves of equilibrium with the variation of the parameter of the variables (a) x and (b) y: o1 ¼ 0.5975, f1 ¼ 10,

k1 ¼ 41.33, c0 ¼ 3.436, m ¼ 0.3.
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where Y is the bialternate matrix product. We can define the singularities, according to these test functions:
(1)
Fig.

c0 ¼
Limit point (LP), also known as fold, when f3 ¼ 0, f1 6¼0,

(2)
 Hopf point and neutral saddles (H), when f2 ¼ 0,

(3)
 Branching point (BP), when f1 ¼ 0.
3. Continuation curves of equilibrium with the variation of the parameters of the variables f0 and r: o1 ¼ 0.5975, f1 ¼ 10, k1 ¼ 41.33,

3.436, m ¼ 0.3.
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2 x

two real eigenvalues with sum zero. In generic one-parameter ODEs, one eigenvalue l1 ¼ 0 is algebraically

In the second case, we notice that f ¼ 0 not only at Hopf points but also at neutral saddles, and that f has

simple at the LP-bifurcation and no other eigenvalues with <ðlÞ ¼ 0 are present. At f0 ¼ f0*, there is a smooth
one-dimensional invariant manifold W0

c in the phase space of Eq. (37), which is called the critical center
manifold at the LP-bifurcation. The curve can be locally parameterized by u 2 R with small |u|. The restriction
of Eq. (37) to W0

c has the form

_u ¼ au2 þOðjuj3Þ (46)

where a is the quadratic normal form coefficient for the LP bifurcation, and can be obtained from

a ¼ 1
2

pT
1 f xx½q1; q1� (47)

where fxq1 ¼ fx
Tp1 ¼ 0, p1

Tq1 ¼ 1.
To start with we consider a set of fixed point x0 ¼ 0, y0 ¼ 0, using the same parameters as above. The

characteristics of the limit cycle and the general bifurcation may be explored by using the software package
MATCONT [19]. This package is a collection of numerical algorithms implemented as a MATLAB toolbox
for the detection, continuation and identification of limit cycles. In this package we use prediction-correction
continuation algorithm based on the Moore–Penrose matrix pseudo inverse for computing the curves of
equilibria, limit point (LP), Hopf bifurcation points(H) or Neutral saddle points, along with branching
point(BP), etc. Fig. 2 shows the continuation curve from the equilibrium point with f0 as the control
parameter. In the figure we get two limit points (LP) and two Neutral saddle points (H).

The two limit points denoted by LP are located at (x, y, f0) ¼ (0.437528, �3.932474, 0.368395), where the
corresponding quadratic normal form coefficient is �3.057365e-001 and at (x, y, f0) ¼ (3.618341, 2.262011,
�0.031927), where the corresponding quadratic normal form coefficient is 3.576476e-001. There are also two
Neutral saddle points denoted by H, which are located at (x, y, f0) ¼ (18.313111, �4.552072, 0.196211) and
(x, y, f0) ¼ (6.803775, 4.547622, 0.017365).

We now consider the starting point to be the LP occurring at f0 ¼ �0.031927, as shown in Fig. 3. f0 and r
are considered as control parameters. The corresponding continuation curves of equilibrium for (f0, x) and
(f0, r) are shown in Fig. 3a, b, respectively, and denoted by blue line. The arrowheads denote the continuation
direction. In the Fig. 3a, the black continuation curves is the same as shown in Fig. 2a.

By changing the values of f0 and r we arrived at branching points (BP2, BP1, BP4, BP2, BP1, BP2) as shown
on the forward direction, and the corresponding coordinates (x, y, f0, r) are (4.105790, �2.206431, �7.917460,
�0.288332), (4.184944, �2.489451, �8.640557, �0.269899), (5.424375, �8.851477, �11.690066, 0.350706),
(1.533801, �8.119698, �8.895372, 0.453956), (0.459540, �3.714532, �1.622045, 0.364811), (0.527386,
�3.235752, �0.745466, 0.361046). In the backward direction we also get branching point at (�0.082969,
4.897345, 0.707488, 0.021201).
5. Conclusion

In above analyses we have explored the parameter stability of a strong nonlinear parametric excitation
system by using the Multiple-scales method. In this way, the nonlinear system is transformed to the averaged
equation and the corresponding amplitude- and phase-modulation equations are obtained. The parameter
stability of solution in the case of principal parametric resonance is developed. Based on the averaged
equation, the continuation algorithm is utilized to analyze the detailed bifurcation scenario as the parameter f0
is varied. The interesting outcome are the occurrence of various kinds of bifurcation points, such as limit point
and neutral saddle points, and a closed curve as the process of continuation takes place. Finally, we obtain a
set of branching points by tuning both parameters f0 and r.
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